Библиотека >> Введение в философию естественных наук.

Скачать 243.58 Кбайт
Введение в философию естественных наук.

Во флюоресцентной микроскопии падающее освещение исключается, и можно наблюдать лишь вторично излучаемый свет разной длины волны, использующий фосфоресценцию или флюоресценцию. Эта гистологическая техника незаменима для некоторых живых тканей. Однако более интересным, чем использование необычных режимов передачи или испускания света, представляются игры, в которые мы играем с самим светом: фазовый контрастный микроскоп Цернике и интерференционный микроскоп Номарского.

Прозрачный предмет однороден по отношению к поглощению света. Он может обладать невидимыми различиями в показателе преломления. Фазовый контрастный микроскоп преобразует эти отличия в видимые отличия интенсивности образа предмета. В обычном микроскопе образ синтезируется из рассеянных волн D и прямых волн U. В фазовом контрастном микроскопе волны U и D разделены гениальным, хотя и очень простым с точки зрения физики, способом. После этого одна или другая волна подвергается фазовой задержке, вследствие чего в фокальной плоскости возникают контрасты, соответствующие различию показателей преломления в предмете.

Интерференционный контрастный микроскоп наверное легче всего понять. Источник света просто разделен пополам посеребренным зеркалом, так что половина света проходит через предмет, а другая половина остается в качестве неизменной опорной волны, которая будет участвовать в восстановлении изображения на выходе. Таким образом, изменения в оптическом пути, создаваемые различиями в показателях преломления, вызывают интерференционные эффекты в опорном луче.

Интерференционный микроскоп создает иллюзорное окаймление предмета, но необыкновенно ценен, поскольку представляет количественное определение показателя преломления в предмете. Естественно, что если у нас есть под рукой подобные приборы, то могут быть сооружены его бесчисленные вариации, такие как поляризующие интерференционные микроскопы; микроскопы, основанные на интерференции множественного луча; интерференции, модулированной по фазе и так далее.

Теория и основания для уверенности

Некоторая часть теории света, конечно, существенна для построения микроскопа нового типа, и обычно важна для улучшения микроскопов старого типа. Интерференционные или фазовые контрастные микроскопы вряд ли могли быть изобретены без использования волновой теории света. Теория дифракции помогла Аббе и его компании делать лучшие микроскопы. Конечно, мы не должны недооценивать дотеоретическую роль изобретения и всяческой возни с ним. На протяжении нескольких десятилетий изготовители старых, основанных на эмпирических соображениях, микроскопов делали их лучше, чем Цейс. Воплощение идеи электронного микроскопа вызвало большое удивление, поскольку теория говорила о том, что объект почти немедленно поджарится, а затем полностью выгорит. Рентгеновский микроскоп давно был теоретической возможностью, но мог быть эффективно построен только в следующие несколько лет с использованием высококачественных лучей, поступающих из линейного ускорителя. Сходным образом, акустический микроскоп, который будет описан ниже, долгое время был очевидной возможностью, но лишь в последние 10 лет появилась быстрая электроника, способная произвести хороший высокочастотный звук и качественные сканнеры. Теория принимала лишь скромное участие в создании этих замечательных приборов. Эта теория обычно излагается в начальных институтских курсах физики. Более существенную роль в этих изобретениях сыграло инженерное мастерство, а не теория.

Может показаться, что теория перешла здесь на другой уровень. Почему мы верим изображениям, которые создает микроскоп? Не потому ли, что у нас есть теория, в соответствии с которой мы строим истинное изображение? Не является ли это другим вариантом замечания Шейпира о том, что наблюдение само определяется теорией? Это лишь частично так. Несмотря на отношение Биша, люди оправданно верили в реальность того, что они видели в микроскопы, изготовленные до Аббе, хотя у них была совершенно неадекватная и тривиальная теория. Визуальные образы удивительно устойчивы по отношению к изменениям в теории. Вы создаете демонстрацию и придерживаетесь некоей теории о том, почему небольшой предмет выглядит именно так. Позже вы изменяете теорию микроскопа, но все же верите в изображение. Может ли теория в самом деле быть источником нашей уверенности в том, что видимое нами совпадает с истинным состоянием вещей?

Как-то Хэйнц Пост написал мне о своих давних мыслях по поводу создания полевого эмиссионного микроскопа, который продемонстрировал бы важность продуцирования зрительных представлений больших молекул (его пример касался антраценовых колец). В то время этот прибор использовали для подтверждения того, что Ф.


Страницы:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132